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Abstract—Temperature response has been determined for natural convection transients involving an

element of finite thermal capacity (in an extensive fluid) subject to a linear increase in input thermal

energy to an asymptotic value. Response characteristics were obtained by numerically integrating the

differential equations which resulted from a modified integral analysis of such transients. The calcula-

tions indicate the nature of transient response and indicate the conditions under which such transients
may be accurately treated as quasi-static processes.
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NOMENCLATURE
generalizing factor for time;
specific heat of fluid;
thermal capacity of element per unit
surface area;
local gravitational acceleration;
local surface coefficient;
thermal conductivity;
flux time constant, equation (10);
instantaneous energy generation rate
per unit of element surface area;
a velocity, proportional to that achieved
in steady state;
instantaneous local velocity maximum;
vertical distance from lower edge of
element for heating and from upper
edge of element for cooling;
distance out, normal to surface;
height of element;
derivative of the generalized tempera-
ture distribution, value listed in Table
1;
conventional Grashof number, based
upon L and average temperature excess
at infinite time, absolute value;
modified Grashof number, based upon
L and surface flux at infinite time,
absolute value;
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Nusselt number based upon L and
average surface coefficient;

Prandtl number;

constant related to the element stor-
age capacity, equation (9);

Prandtl number dependent constant;
temperature;

generalized time variable, equation (8);
Prandtl number dependent constant;
Prandtl number dependent constant;
Al‘)/ Aﬁgoo'

Greek symbols

9m, ‘[‘,

thermal diffusivity of fluid;

coefficient of themal expansion of
fluid;

thickness of thermal boundary layer;
86/L;

local temperature excess (f — #);
instantaneous local temperature maxi-
mum (or minimam);
fluid aboslute viscosity;
density of fluid;
time;
fluid kinematic viscosity;

Umftig;

gm/ o0

¥, and ¥ are average values over the
height of the element.
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Subscripts
o0,  at infinite time;
0, at solid-fluid interface;
s, quasi-static;
¢, one-dimensional conduction;

in the remote fluid.

n
i

INTRODUCTION

IN A PREVIOUS paper [l] the present writer pre-
sented an integral method of analysis for tran-
sient natural convection from vertical elements
immersed in an extensive body of fluid. The
various velocity and temperature distribution
constants which arose in the analysis were
evaluated for various Prandtl numbers from
0-01 to 1000 from the vertical flat plate solutions
of Ostrach [2]. Therefore, the equations, with
these constants, apply for vertical elements of
relatively large radius of curvature. In {l1]
solutions of the general equations were obtained
for a step in thermal flux at the surface of an
element having zero thermal capacity. The
element temperature response was essentially
independent of the Prandtl number in the
generalized variables used. The response was
almost the same as a one-dimensional conduction
transient for the first 80 per cent of the tempera-
ture rise.

A subsequent paper [3] presents solutions of
the general equations for a step in thermal
energy input to elements having appreciable
thermal capacity. Again the Prandtl number
effect is negligible in terms of the generalized
variables. Three types of transients were found,
depending upon the value of a generalized
thermal capacity parameter Q. For Q < 01,
processes are essentially one-dimensional con-
duction in the fluid (allowing for element thermal
capacity). For Q > 1-0, processes are essentially
quasi-static, the transport process being essenti-
ally equivalent at all times to a steady state
process at the instantaneous temperature con-
dition. For 0 between 01 and 1-0 the processes
are true convection transients in the sense that
the fluid thermal capacity and inertia effects are
important, The initial rate of temperature
response is Q' in all cases.

In a companion paper [4] the results of the
analysis in [3] are compared with measured
transients on vertical plates in air and in wafter.
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Temperature measurements in the tests in air
were made with an optically chopped, lead-
selenide, infrared detector having a time con-
stant of approximately 30 us. Various test data
in water, available in the literatare in [5], [6] and
{71, are based upon resistance thermometry and
upon interferograms. The air tests were predicted
to be essentially quasi-static and the water tests
were predicted to be essentially one-dimensional
conduction. All of the test data are in complete
agreement with the results of the theory. This
may be seen in Fig. 3 by comparing the experi-
mental points with the solid line curves.

Treatments of natural convection transients
by other workers are summarized in [1] and in
{3]. These analyses treat a variety of cases and
indicate the present limitations of exact and
perturbation solutions. None of these analyses
include the effect of element thermal capacity,
which is inevitably present in actual equip-
ment.

In the present paper the effect upon tempera-
ture response of a time dependent thermal
energy input to the element is investigated.
Since the necessary condition for an essentially
quasi-static response is not particularly stringent
even for a step in input, a less extreme variation,
a linear increase in input to the asymptotic value,
is investigated. Such a linear increase is a good
approximation for some reactor transients and
for many transients in electrical equipment.

SOLUTIONS FOR TRANSIENTS

The analysis of [{] resulted in ordinary
differential equations which relate the instan-
taneous value of the element temperature, the
thermal layer thickness and the maximum
induced velocity variables (4, Y, and y) to
generalized time 7. The equations apply to
vertical plates and to vertical cylinders, sketched
in Fig. 1, under the conditions in which a two-
dimensional laminar boundary layer analysis in
Cartesian co-ordinates is permissible. The
equations in terms of average values (¢, Y, and
%), averaged over the height of the element at
time T, are written as

d - :
e @D =T =0
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where the constants S, U, W, and a depend only
upon Prandtl number. Note that in steady state
the time derivatives are zero and that §, ¥, and
i are 1-0. Therefore, from equation (2) we have

S=U+W. )

The thermal flux quantities, g and q.,, are the
instantaneous and asymptotic values of the rate
of energy input to the element per unit of element
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surface area. The dependent variables ¢, ¥, and
¥, the generalized time T, and the generalized
thermal capacity variable Q are defined as
follows:

= ®

P z%’; ©

X = Umfug (7

T= Zz%g,f; = }'—‘}2 (bGr*Pry/s (8)
0= Lljlw., B(Gr*Pr)s., )

The Prandtl number dependent quantities are
listed in Table 1 and the various quantities are
defined in the listing of notation.

The linear increase in input flux to the element,
which is the case considered here, is written in
terms of the generalized time T as follows:

7

q

90
where ¢ is the time constant of the increase. The
flux ratio from this relation is used until g7 =
1-0. Thereafter the ratio is taken as 1-0. This
variation is shown in Fig. 2 and is an idealization
of an increase in input flux to an asymptotic
value.

Equations (1), (2), (3) and (10) may be com-
bined to eliminate ¥ and ¢”/q.. to give the
following differential equations for ¢ and ¥,
valid during the increase.

=qT (10)

Table 1. Values of the Prandtl number dependent constants based upon
the steady state distributions of Ostrach [2]

Pr a S w M, b x 10¢
0-01 0-1844 9-083 1-165 7-918 1-88 1-408
0-72 0-2000 16-13 9-242 6-886 1-79 40-25
10 01971 17-67 10-97 6704 1-79 71-15
5t 01936 3340 26-78 6-616 1-78 75:97

10 0-1894 41-69 35-29 6-398 1-77 8743

100 0-1924 1269 1214 5-523 1-77 137-1
1000 0-1905 2632 2586 4-677 1-76 1184

T Interpolated from other values.
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The terms whaich. arise due to a time dependent
flux are the third m egnation (11) and the £ifth
m equation (12). For the time period after the
linear fncrease these rerms are dropped and the
47 is taken egual to 1-0. As in the case of a step
in input flux [3], an. order of magmmde analysis
incicates that ¢/ ¥ is «ero at T == 0. Thereforc,
from equation (3), " =20 at T =0 and the
initial slope of the temperature response is zero.
The beundary conditions are:

at T = 0, = & = 5 = {.

The differential equation for the quasi-static
response 4, to a time dependent input may be
obtained from equations (1}, 2} and (3} by
omitting the terms for the acceleration of the
fluid and for the time rate of change of thermal
ensrgy storage in the fluid.

ddie . o
Q d’ -4 ,g;if-@ — {’;, e 0‘

(13)

(14)
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This is of the form of a Bernoulli differential
equation, Substituting the linear flux variafion.
aquation (10}, we have

e
A7) T
where 5!: -0 when 7 == 0 und the last term
bccomea 10 at g7 - 1-0, Equation (15) indicates
that yris a functioh only of 770 and g0,

Calcylations were carried out for a Prandil
number of 072 to determine the conditions
under which the response & was withina few per
cent of the quasi-static . Consideration was
limited 1o values of () less than 10 since even
for a siep in input flux (essentially ¢ - o) all
processes for which @ > 1-0 are approximately
quasi-szatic. Values of @ ol 0:5, 01, O+01. and
0-001 were considered.

The calewlated temperature response {or a
lincar increase in input flux is compared to a
step i input (to the same asymptotic value) in
Fig. 3. The sohd curves, from [3], apply for &
step for various values of the thermal capacity
parameter @, The response for @ — 3 was
caleolated as a convection transient. For
and [0 the responses are essentially the same as
the guasi-static response. For @ - 0029, 00057
and 00014 the responses shown are essentially
cquivalent t¢ g one-dimensional conductinn
transient. The experimental points are from fests
{4} with @ step in input at the values of O shown
on the figure. This plot shows the excellen:
agreement between the theory and measure-
ments for the case of a step in input,

The dashed curves on Fig. 3 are convection
transients calculated {or linear increases at the
rates ¢ =~ | and ¢ == 5 for ¢ -~ (-3, The two
dashed curves show that the initial nature of the
response for a linear increasc is quite different,
even for the very short “rise-times” assoeiated
with values of ¢ of 1 and 3.

The difference in response for the two types of
input flux variation may he seen in more detail
in Fie. 4 where convection transients for ¢ = (-1
are compared. The upper solid line curve is for
a step in input, the Hmiting rate for the lmear
increnge, i.e. g — oo, and the others arc for
various values of ¢. The quasi-static solutions.
from {3] and from equation (13}, are shown as

ziQ( ) (i
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TEST POINTS [4]

+-IN WATER
o IN AIR:
@=0-0014 0-Q=30'8
0-@-2-48
A-Q=0TI
5 6 7

T/Q

FiG. 3. Temperature responses for various flux input conditions, comparisons with measurements.

—— TRANSIENT
— —~— QUASI-STATIC

F1G. 4. Temperature responses (for O = 0-1).
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dashed curves. Values of ¢ are indicated by the
numbers on the curves. There is seen to be a
substantial transient effect for the more rapid
rates of input flux increase, i.e. for larger values
of q.

For the step increase in flux input, the con-
dition for an essentially quasi-static process was
not particularly extreme. The condition is
merely Q >> 1-0. For the case of a linear increase
it seemed likely that, for sufficiently slow increases
in input, te. small ¢, quasi-static processes
should be found even for @ < 1-0. This possibil-
ity was investigated by calculating  and s
from equations (11), (12) and (15) for Q == 0-5,
0-1, 0-01 and 0-001 for various ¢. For each value
of Q the value of ¢ was determined for which
Ji — i remained less than 0-05 over the entire
range of ¢ from 0 to 1-0. That is, the value of ¢
was determined for which ; gave the correct
temperature response within 5 per cent of the
asymptotic value of . For smaller values of ¢
than this limiting one, the quasi-static response
is an even better approximation. These limiting
values of ¢ are plotted in Fig. 5 against Q and a
curve is drawn through the points, thereby
separating the regimes of essentially quasi-static
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and true transient. Note that from the results
in [3] the quasi-static is within 5 per cent of the
convection transient for Q = 1-0 even for a step
in flux input. It is to be noted that the maximum
of i 4 occurs very early in the transient.
Therefore, if the general temperature responsc
(or the time to essentially steady state) are the
matters of primary interest, the simple quasi-
static result may be used for much larger values
of ¢ than those suggested by Fig. 5.

CONCLUSIONS

Natural convection transients have been
analysed by numerically integrating equations
derived through an extension of the integrai
method of boundary layer analysis. Various
types of processes have been treated. Considera-
tion of processes resulting from a step in thermai
energy input to an element having finite thermal
capacity have indicated the Prandtl number
effect and have delineated three types of
responses: the essentially quasi-static, the truc
convection transient, and the essentially one-
dimensional conduction response.

The results reported in this paper indicate the
nature of transient response for a linear increase
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FI1G. 5. Response regimes for a linear increase in input flux.
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in thermal energy input and show that, even for
elements of relatively low thermal capacity, a
quasi-static process may result for sufficiently
low rates of flux increase. The limits for such a
response are given for a broad range of element
thermal capacity.
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Résumé—Les réponse thermiques ont été déterminées pour des cas de convection naturelle transitoire
sur un élément de capacité thermique finie placé dans un fluide s’étendant a I’infini, soumis a une loi
de chauffage linéaire jusqu’au régime asymptotique. Les réponses sont obtenues par intégration
numérique des équations différentielles résuitant d’une analyse intégrale des réponses transitoires.
Les calculs donnent la nature des réponses transitoires et indiquent les conditions sous lesquelles de tels
problémes peuvent étre traités avec précision en temps que processus quasi-statique.

Zusammenfassung—Fiir Anlaufvorginge bei freier Konvektion an einem Element endlicher Wirme-

kapazitit (in einem ausgedehnten Medium), das einer linearen Heizleistungssteigerung bis zu einem

asymptotischen Wert unterworfen war, wurde der Temperaturverlauf bestimmt. Die Charakteristik

dieses Temperaturverlaufs liess sich durch numerische Integration der Differentialgleichungen, die aus

einer modifizierten Integralanalyse der Anlaufvorgiinge stammen, erhalten. Die Rechnungen zeigen die

Art des Anlaufvorganges und geben die Bedingungen an, fiir die derartige instationéire Vorgéinge als
quasi-stationire Probleme genau behandelt werden kdnnen.

Annoramma—OrnpeelleH0 H3MeHeHHe TeMIeparyphl MpH HeyCTAHOBUBIIMXCA IIPOIECCAX
€CTeCTBEHHON KOHBEKINN IS 27eMeHTOB KOHEYHO! TemnoeMKocTH (B Goabluom o0beme
FRITKOCTH) ¢ JWHeMHHIM YBeIMYeHHeM IOJauyd TeIIOBOH 9YHEPIHH [0 ACHMIITOTHYECKOTO
sHavenus. [loayveHs XapaKTepUCTHKI MEPeXOFHOTO IPoLecca MyTeM YHUCISeHHOr0 UHTErpu-
poBanuA mupdepeHUMATEHEX YDaBHeHM, BHBEJEHHHIX HA OCHOBe MOXM(UIUPOBAHHOrO
MHTErpajIbHOT0 AaHAJH3a TAKUX HeYCTAHOBHBLIXCA MpOIeEccOB. PacyeTh YHKasHBalOT Ha
NPHPOJY XAPAKTePUCTUKH HEYCTAHOBUBILETOCA DerKuMa M Te YCIOBHA, NPH KOTOPHX TaKHe
HEeYCTAHOBUBIINECHA PEMHUMEL MOTYT PACCMATPUBATECA KAK KBASHCTATHYECKME NMPOLECCH.



