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A~~ct-Tem~rature response has been determined for natural convection transients involving an 
element of finite thermal capacity (in an extensive fluid) subject to a linear increase in input thermal 
energy to an asymptotic value. Response characteristics were obtained by numerically integrating the 
differential equations which resulted from a modified integral analysis of such transients. The calcula- 
tions indicate the nature of transient response and indicate the conditions under which such transients 

may be accurately treated as quasi-static processes. 

NO~NCLAT~ 

generalizing factor for time; 
specific heat of fluid; 
thermal capacity of element per unit 
surface area; 
local gravitational acceleration; 
local surface coefhcient ; 
thermal conductivity; 
flux time constant, equation (10); 
instantaneous energy generation rate 
per unit of element surface area; 
a velocity, proportional to that achieved 
in steady state ; 

A% Nusselt number based upon L and 
average surface coefficient ; 

pp, Prandtl number; 
Q, constant related to the element stor- 

age capacity, equation (9); 
s, Prandtl number dependent constant ; 
4 temperature; 
TY generalized time variable, equation (8): 
0; PrandtI number dependent constant; 
K Prandtl number dependent constant ; 
r, iJtIl4,CiY 

distance out, normal to surface; 
height of element ; 
derivative of the generahzed tempera- 
ture distribution, value listed in Table 
1; 
conventional Grashof number, based 
upon L and average temperature excess 
at infinite time, absolute value; 
modified Grashof number, based upon 
L and surface flux at infinite time, 
absolute value; 

instantaneous local velocity maximum ; 
vertica1 distance from lower edge of 
element for heating and from upper 
edge of element for cooling; 

Greek symbofs 
a, thermal diffusivity of Auid; 
,!I, coefficient of themal expansion of 

fluid; 
6 03 thickness of thermal boundary layer; 
A 
@B 

%lL ; 
focal temperature excess (t - tr) ; 

@,, instantaneous iocai temperature maxi- 
mum (or minimum) ; 
fluid aboslute viscosity; 
density of fluid; 
time ; 
fluid kinematic viscosity; 

-. 
t Professor of Mechanical Engineering. 

KM.-3P 

tlm, 9, Y, and jj are average values over the 
height of the element. 
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Subscripts 

c?’ 
at infinite time ; 
at solid-fluid interface ; 

s, quasi-static ; 

C? one-~me~sional conduction; 
1”, jn the remote fluid. 

INTRODUCTION 

11‘1 A PREVIOUS paper [I] the present writer pre- 
sented an integral method of analysis for tran- 
sient natural convection from vertical elements 
immersed in an extensive body of fluid. The 
various velocity and temperature distribution 
constants which arose in the analysis were 
evaluated for various Prandtl numbers from 
0.01 to 1000 from the vertical flat plate solutions 
of Ostrach [2]. Therefore, the equations, with 
these constants, apply for vertical elements of 
relatively large radius of curvature. In [I] 
solutions of the general equations were obtained 
for a step in thermal flux at the surface of an 
element having zero thermal capacity. The 
element temperature response was essentially 
independent of the Prandtl number in the 
generalized variables used. The response was 
almost the same as a one-dimensional conduction 
transient for the first 80 per cent of the tempera- 
ture rise. 

A subsequent paper [3] presents solutions of 
the general equations for a step in thermal 
energy input to elements having appreciable 
thermal capacity. Again the Prandtl number 
effect is negligible in terms of the generalized 
variables. Three types of transients were found, 
depending upon the value of a generalized 
thermal capacity parameter Q_ For Q cr: 0. I, 
processes are essentially one-dimensional con- 
duction in the fluid (allowing for element thermal 
capacity). For Q > 1.0, processes are essentially 
quasi-static, the transport process being essenti- 
ally equivalent at all times to a steady state 
process at the ins~ntaneous temperature con- 
dition. For Q between 0.1 and 1-O the processes 
are true convection transients in the sense that 
the Auid thermal capacity and inertia effects are 
important. The initial rate of temperature 
response is Q-l in all cases. 

In a companion paper [4] the results of the 
analysis in t3] are compared with measured 
transients on vertical plates in air and in water. 

Temperature measurements in the tests in air 
were made with an optically chopped. lead-, 
selenide, infrared detector having a time con- 
stant of approximately 30 ps. Various test data 
in water, available in the literature in [5], [6] and 
[7], are based upon resistance thermometry and 
upon interferograms. The air tests were predicted 
to be essentially quasi-static and the water tests 
were predicted to be essentially one-dimensional 
conduction. All of the test data are in complete 
agreement with the results of the theory. This 
may be seen in Fig. 3 by comparing the experi- 
mental points with the solid line curves. 

Treatments of natural convection transients 
by other workers are summarized in [I] and in 
[3]. These analyses treat a variety of cases and 
indicate the present limitations of exact and 
perturbation solutions. None of these analyses 
include the effect of element thermal capacity, 
which is inevitably present in actual rquip- 
inent. 

In the present paper the effect upon tempera- 
ture response of a time dependent thermal 
energy input to the element is investigate~~. 
Since the necessary condition for an essentially 
quasi-static response is not particuIarly stringent 
even for a step in input, a less extreme variation, 
a linear increase in input to the asymptotic value, 
is investigated. Such a linear increase is a good 
approximation for some reactor transients and 
for many transients in electrical equipmenr. 

SOLUTIONS FOR TRANSIENTS 

The analysis of [I ] resulted in ordinary 
differential equations which relate the instan- 
taneous value of the element temperature, the 
thermal layer thickness and the maximum 
induced velocity variables (#. Y, and s) to 
generalized time X. The equations apply to 
vertical plates and to vertical cylinders, sketched 
in Fig. 1, under the conditions in which a two- 
dimensional laminar boundary layer analysis in 
Cartesian co-ordinates is permissible. The 
equations in terms of average values ($, r, and 
j), averaged over the height of the element at 
time T, are written as 
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0+r 

surface area. The dependent variables 4, P, and 
li;, the generalized time T, and the generalized 
thermal capacity variable Q are defined as 
follows : 

$=+!! (5) 
??A, co 

+L (6) 
8.m 

17 = &?A? (7) 

T = L<-m = $ (bGr*Pr)2/5 03) 
899 m 

Q = $&o b(Gr*Pr)llS. (9) 

VERTICAL ELEMENT 

FIG. 1. 

4 q” d$ -=-- 
p 4: Q,, 

where the constants S, U, W, and a depend only 
upon Prandtl number. Note that in steady state 
the time derivatives are zero and that 4, P, and 
jj are 1.0. Therefore, from equation (2) we have 

s= u-/- w. (4) 

The thermal flux quantities, q” and qz, are the 
instantaneous and asymptotic values of the rate 
of energy input to the element per unit of element 

The Prandtl number dependent quantities are 
listed in Table 1 and the various quantities are 
defined in the listing of notation. 

The linear increase in input flux to the element, 
which is the case considered here, is written in 
terms of the generalized time T as follows: 

cl” - =qT I, (10) 
4, 

where q is the time constant of the increase. The 
flux ratio from this relation is used until qT = 
1.0. Thereafter the ratio is taken as 1.0. This 
variation is shown in Fig. 2 and is an idealization 
of an increase in input flux to an asymptotic 
value. 

Equations (I), (2), (3) and (10) may be com- 
bined to eliminate P and q/‘/q: to give the 
following differential equations for $ and x, 
valid during the increase. 

Table 1. Values of the Prandtl number dependent constants based upon 
the steady state distributions of Ostrach [2] 
- 

Pr a S u W MC? b x 10p 

0.01 0.1844 9.083 1.165 7.918 1.88 1408 
0.72 0~2000 16.13 9.242 6.886 l-79 40.25 
I.0 0.1971 17.67 10.97 6.704 1.79 71.15 
5t 0.1936 3340 26.78 6.616 1.78 75.97 

10 0.1894 41.69 35.29 6.398 I .77 87.43 
100 0.1924 126.9 121.4 5.523 I .77 137.1 

1000 0.1905 263.2 258.6 4.677 1.76 118.4 
- 

t Interpolated from other values. 



FIG. 2. 
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FIG. 3. Temperature responses for various flux input conditions, comparisons with measurements. 

FIG. 4. Temperature responses (for Q = 0.1). 
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dashed curves. Values of 4 are indicated by the 
numbers on the curves. There is seen to be a 
substantial transient effect for the more rapid 
rates of input flux increase, i.e. for larger values 
of q. 

For the step increase in flux input, the con- 
dition for an essentially quasi-static process was 
not particularly extreme. The condition is 
merely Q ;- 1.0. For the case of a linear increase 
it seemed likely that, for sufficiently slow increases 
in input, i.e. small q, quasi-static processes 
should be found even for Q < 1.0. This possibil- 
ity was investigated by calculating $ and & 
from equations (I l), (12) and (15) for Q 0.5, 
0.1, 0.0 1 and 0.001 for various q. For each value 
of Q the value of q was determined for which 
t,& -- $ remained less than 0.05 over the entire 
range of $ from 0 to I.0. That is, the value of y 
was determined for which & gave the correct 
temperature response within 5 per cent of the 
asymptotic value of li;. For smaller values of (1 
than this limiting one, the quasi-static response 
is an even better approximation. These limiting 
values of q are plotted in Fig. 5 against Q and a 
curve is drawn through the points, thereby 
separating the regimes of essentially quasi-static 

1. 

0. 

Q 

0. 

i 

0 

a 

and true transient. Note that from the result> 
in [3] the quasi-static is within 5 per cent of the 
convection transient for Q T-- I.0 even for a stel’ 
in flux input. It is to be noted that the maximum 
of $,Y $ occurs very early in the transient. 
Therefore, if the general temperature response 
(or the time to essentially steady state) are fhc 
matters of primary interest, the simple quahi-. 
static result may be used for much larger value\ 
of q than those suggested by Fig. 5. 

COrwLUSIONS 

Natural convection transients have bee:: 
analysed by numerically integrating equation: 
derived through an extension of the integral 
method of boundary layer analysis. Variou> 
types of processes have been treated. Considera- 
tion of processes resulting from a step in thermai 
energy input to an element having finite thermal 
capacity have indicated the Prandtl numbei 
effect and have delineated three types s:i 
responses: the essentially quasi-static. the trui- 
convection transient, and the essentially one- 
dimensional conduction response. 

The results reported in this paper indicate tile 
nature of transient response for a linear increase 

, 

001 

FIG. 5. Response regimes for a linear increase in input flux. 
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in thermal energy input and show that, even for 2. 
elements of relatively low thermal capacity, a 
quasi-static process may result for sufficiently 
low rates of flux increase. The limits for such a 3. 
response are given for a broad range of element 
thermal capacity. 
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R&me-Les rkponsethermiques ontCt6 dCterminQs pour descas de convectionnaturelletransitoire 
sur un element de capacitt thermique finie place dans un fluide s’btendant a l’infini, soumis a une loi 
de chauffage lineaire jusqu’au regime asymptotique. Les reponses sont obtenues par integration 
numerique des equations differentielles resultant d’une analyse integrale des reponses transitoires. 
Les calculs donnent la nature des reponses transitoires et indiquent les conditions sous lesquelles de tels 

problemes peuvent itre trait& avec precision en temps que processus quasi-statique. 

Zusammenfassung-Fiir Anlaufvorglnge bei freier Konvektion an einem Element endlicher Wlrme- 
kapazitlt (in einem ausgedehnten Medium), das einer linearen Heizleistungssteigerung bis zu einem 
asymptotischen Wert unterworfen war, wurde der Temperaturverlauf bestimmt. Die Charakteristik 
dieses Temperaturverlaufs liess sich durch numerische Integration der Differentialgleichungen, die aus 
einer modifizierten Integralanalyse der Anlaufvorglnge stammen, erhalten. Die Rechnungen zeigen die 
.4rt des Anlaufvorganges und geben die Bedingungen an, ftir die derartige instationlre Vorgange als 

quasi-station&e Probleme genau behandelt werden konnen. 

.4HHoTaqrrJr-OnpeAeneHo 83MeHeHHe TeMnepaTypbr npll HeyCTaHOBHBmHXCR npoHeccax 
eCTBCTBeHHOn KOHBeHHHH @IH aJIeMeHTOB KOHeYHOti TenJrOeMHOCTH (B 6OnbmoM o6%eMe 
=HAKOCTR) c JmHenHbIM yBeBMseHHeM noRasH TenJIOBOti aKeprw A0 aCHMnTOTM~eCHOrO 
3Kaqem4n. IIonylteHnxapWTepHcTmn4 nepexo~Koronpo~ecca nyTem wcJreHHor0 HKTerpH- 
pOBaHW ,lUi@~epeHLIkiaJlbHblX ypaBHeHH& BbIBeAeHHbIX Ha OCHOBe MO~HijjMlJHpOBaHHOrO 
klHTerpaJlbHOr0 aKa3IH3a TaKHX HeyCTaHOBABmXCR npoJJeccoB. PacseTbI yKa3aBamT Ha 
npllpOAyXapaKTepIlCTHKI4 HeyCTaHOBHBmerOCR pe?KHMaM Te yCJIOBan,npH KOTOpbIXTaKHe 
HeyCTaHOBMBIIIneCFl peWIMbIMOryT paCCMaTpHBaTbCR KaK KBa3HCTaTIIYeCKHe npOqeCCb1. 


